The Schwarzschild metric in absolute gravity

David B. Parker* pgu.org (Dated: April 23, 2023)

INTRODUCTION

This technical report lists some of the properties of the Schwarzschild metric in absolute space and time. They were calculated by substituting the Schwarzschild metric into the formulas in [1].

• Speed of a photon moving radially:

$$\mathbf{v} = \pm c \left(1 - \frac{2KM}{c^2 r} \right) \hat{\mathbf{r}}.$$
 (1)

• Acceleration of a photon moving radially:

$$\mathbf{a} = \frac{2KM}{r^2} \left(1 - \frac{2KM}{c^2 r} \right) \hat{\mathbf{r}}.$$
 (2)

- Radius of the superluminal photocore is $\frac{KM}{c^2}$, which is 1/2 the Schwarzschild radius $\frac{2KM}{c^2}$.
- Radius of the superluminal matter core is $\simeq 0.2779263 \frac{2KM}{c^2}$.
- Acceleration of static matter:

$$\mathbf{a} = -\frac{KM}{r^2} \left(1 - \frac{2KM}{c^2 r} \right) \hat{\mathbf{r}}.$$
(3)

• Acceleration of matter moving radially:

$$\mathbf{a} = -\frac{KM}{r^2} \left(\left(1 - \frac{2KM}{c^2 r} \right) - \frac{1}{1 - \frac{2KM}{c^2 r}} \frac{3v^2}{c^2} \right) \hat{\mathbf{r}}.$$
(4)

• Density σ of black hole:

$$\sigma = \frac{3c^6}{32\pi K^3 M^2}.$$
(5)

* Electronic address: daveparker@pgu.org

[1] Parker, D. B., "The absolute gravity force equation as classical mechanics", 2023, preprint, https://pgu.org