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This letter describes how to implement general relativity with electromagnetism in absolute space
and time, so that a simulation of both together takes only on the order of twice as much time as
a simulation of electromagnetism alone. The implementation is eminently suited for parallel com-
putation. This allows faster and algorithmically simpler simulations of relativistic charged particles
propagating through intense electromagetic fields near relativistic bodies. Maxwell’s equations are
already written in terms of absolute space and time, so almost all of the speed improvements and
algorithmic simplifications come from specializing general relativity to absolute space and time.

INTRODUCTION

Accurately simulating electrodynamics is efficient and straightforward because Maxwell’s equation are already
written in terms of absolute space and time, so electrodynamics simulations can take uniform steps through space and
time. Accurately simulating general relativity is trickier because Einstein’s equations usually necessitate nonuniform
step sizes through space and time. Reconciling the differing step sizes for electromagetism and general relativity leads
to algorithmic complexity and computational inefficiency. This letter describes how to implement general relativity
with electromagnetism in absolute space and time, so that a simulation of both together takes only on the order
of twice as much time as a simulation of electromagnetism alone. This allows faster and algorithmically simpler
simulations of highly relativistic charged particles propagating through intense electromagetic fields near relativistic
bodies.

Here is the most important result in this letter, the 3-dimensional force equation for absolute electrogravity:
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Each of the two terms on the right hand side, one for general relativity and the other for electromagnetism, take
roughly the same amount of time to compute (depending on the hardware and programming tricks) so the total
computation time is on the order of twice as much as either term alone. In addition, equation (1) is eminently suited
to parallel computation because it allows space to be divided up into independent rectangular blocks.

There are other ways to simulate general relativity and electromagnetism other than by merely stepping uniformly
through space and time (such as adaptive meshes, etc), but I expect those other methods will also benefit from
equation (1).

Anyone sufficiently familiar with general relativity might want to skip directly to equation (9) in the derivation
because the material from here to there is mainly review.

Equation (1) is written using Einstein’s summation convention. The indexes µ, ν, and σ run from 0 to 3. The
index i runs from 1 to 3. Equation (1) represents a system of three equations for i = 1, 2, 3. t is absolute time. The

ri are the absolute coordinates (rx, ry, rz) of a particle in an absolute (x, y, z) coordinate system, so that d2ri

dt2 is the

absolute acceleration of a particle that is moving at absolute velocity dri

dt . The [µν, σ] are Christoffel symbols of the
first kind. Inside the Christoffel symbols, it is important to remember that x0 = ct and x1, x2, x3 = x, y, z. In the

summations on the right hand side, it is important to remember that r0 = ct, so that dr0

dt = c. The units for t and
x, y, z are ordinary time and length units; for example, seconds and meters. k is the electromagnetic constant, q is
the charge, m is the mass, and F is the electromagnetic field tensor. No constants have been set to 1.

In absolute electrogravity, the field equation for the generation and propagation of gµν is the same as the Einstein
equation in general relativity, as long as one remembers to include electromagnetism in the energy-momentum-stress
tensor. Also, the step sizes when propagating gµν should be the same size as in the simulation of the force law. In
absolute electrogravity, gµν is no longer a metric; it is a set of 10 potentials (taking advantage of the symmetry of
gµν). The field equation for the propagation of F is the same as Maxwell’s equations.

This work is a continuation of [2]. I will be using equation (1) in my own simulations. I hope others find it as
useful.
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DERIVING THE FORCE EQUATION

We assume that the metric gαβ has signature (1,−1,−1,−1) so that τ and x0 = ct are both positive in the future
direction.

We start from the geodesic equation including the electromagnetic force:
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τ is the proper time as measured by a standard clock moving with the particle. The trajectory of the particle in four
dimensions is rα = (r0, r1, r2, r3) where (r0, r1, r2, r3) are the coordinates of the particle in the coordinate system
xα = (x0, x1, x2, x3). x0 is taken to be time coordinate x0 = ct, where in general relativity x0 and/or t are coordinate
time. k is the electromagnetic constant, q is the charge, m is the mass, and F is the electromagnetic field tensor.

Later we will take r0 = x0 = ct, with t the absolute time, and (x1, x2, x3) to be the absolute (x, y, z) coordinate
system, but there is work to be done before we can make that leap.

The Christoffel symbol of the second kind in equation (2), Γαµν , conflates the role of the inverse metric, gαβ with
the derivatives of the metric gαβ in calculating the geodesic:
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We are going to revert to a somewhat more archaic notation (see [1], equations (20d) through (23)) using Christoffel
symbols of the first kind, written as [µν, σ], to separate the inverse metric from the derivatives of the metric:
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Substituting equation (4) into equation (3) for Γαµν gives:

Γαµν = gασ[µν, σ]. (5)

Substituting equation (5) into equation (2) for the geodesic gives:
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We now want to get rid of the derivatives with respect to τ (the proper time), and replace them with derivatives
with respect to x0 (the coordinate time). Applying the chain rule for derivatives gives:
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Substituting the derivatives from equations (7) into equation (6):
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Multiplying both sides of equation (8) by
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We are entering the crucial steps where we specialize general relativity to absolute space and time. The first step

is to rewrite the factor
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We now specialize space to be absolute so that we can run simulations with uniform distance steps. In absolute
space the coordinate system does not change with time, so the derivatives dxν

dx0 in equation (10) are:
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The left hand side of equation (13) still has a complicated factor in curly braces. Actually, equation (13) represents
four equations, one for each of α = 0, 1, 2, 3. The complicated factor, because it depends only on x0 and τ , is the same
for all four equations. We are going to sacrifice one of the equations to solve for the complicated factor. In particular,
we are going to sacrifice the equation for α = 0.

Separating equation (9) into equations for α = 0 and α = 1, 2, 3, and then using i instead of α to remind ourselves
that the index in equation (14b) now only goes from 1 to 3:
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We now specialize time to be absolute so that we can run simulations with uniform time steps. In absolute time,
r0 = x0. Then the derivatives of r0 on the left hand side of equation (14a) become:
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Solving for the complicated factor by substituting equations (15) into equation (14a) gives:{
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Substituting equation (16) into equation (14b) and moving the term containing the complicated factor to the right
hand side gives:
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Finally, replacing x0 with ct and multiplying both sides of equation (17) by c2 gives equation (1).
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