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A problem with accurately simulationing General Relativity is that it is computationally ineffi-
cient. The problem arises because accurate simulations necessitate nonuniform step sizes in both
space and time. This paper shows how to solve that problem by implementing General Relativity
in absolute space and absolute time. Using a uniform 3-dimensional grid with a uniform time step
should greatly speed up gravitational simulations, especially in high density high force situations
such as QCD nucleon modeling. The most important result in this letter is the 3-dimensional force
equation for absolute gravity.

INTRODUCTION

Accurate simulations of high density high force situations are computationally expensive because of the non-uniform
space and time steps that General Relativity necessitates. This letter show how to implement General Relativity in
absolute space and absolute time so that General Relativity simulations can be accurately run on a uniform 3-
dimensional grid with a uniform time step.

Here is the most important result in this letter, the force equation for absolute gravity:
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Anyone already familiar enough with General Relativity can probably skip directly to equation (9) in the derivation,
since the intervening material is mainly review.

Equation (1) is written using Einstein’s summation convention. The indexes µ, ν, and σ run from 0 to 3. The
index i runs from 1 to 3. Equation (1) represents a system of three equations for i = 1, 2, 3. t is absolute time. The

ri are the absolute coordinates (rx, ry, rz) of a particle in an absolute (x, y, z) coordinate system, so that d2ri

dt2 is the

absolute acceleration of a particle that is moving at absolute velocity dri

dt . The [µν, σ] are Christoffel symbols of the
first kind. Inside the Christoffel symbols, it is important to remember that x0 = ct and x1, x2, x3 = x, y, z. In the

summations on the right hand side, it is important to remember that r0 = ct, so that dr0

dt = c. The units for t and
x, y, z are ordinary time and length units; for example, seconds and meters. No constants have been set to 1. Mass
does not appear in equation (1) because gravitational acceleration is independent of mass.

In absolute gravity, the field equation for the generation and propagation of gµν is the same as the Einstein equation
in General Relativity. There is an important difference of interpretation, though. In absolute gravity, gµν is no longer
a metric; it is a set of 10 potentials (taking advantage of the symmetry of gµν). Computationally, now that the force
equation is in terms of absolute space and absolute time, the Einstein equation can also be simulated on a uniform
3-dimensional grid with uniform time step.

I will be using equation (1) in my own simulations. I hope others find it as useful.

DERIVING THE ABSOLUTE GRAVITY FORCE EQUATION

We start from the geodesic equation:
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(2)

τ is the proper time as measured by a standard clock moving with the particle. The trajectory of the particle in four
dimensions is rα = (r0, r1, r2, r3) where (r0, r1, r2, r3) are the coordinates of the particle in the coordinate system
xα = (x0, x1, x2, x3). x0 is taken to be time coordinate x0 = ct, where in General Relativity x0 and/or t are called
the coordinate time. Later we will take r0 = x0 = ct, with t the absolute time, and (x1, x2, x3) to be the absolute
(x, y, z) coordinate system, but there is work to be done before we can make that leap.
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The Christoffel symbol of the second kind in equation (2), Γαµν , conflates the role of the inverse metric, gαβ with
the derivatives of the metric gαβ in calculating the geodesic:
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)
(3)

We are going to revert to a somewhat more archaic notation (see [1], equations (20d) through (23)) using Christoffel
symbols of the first kind, written as [µν, σ], to separate the inverse metric from the derivatives of the metric:
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Substituting equation (4) into equation (3) for Γαµν gives:

Γαµν = gασ[µν, σ] (5)

Substituting equation (5) into equation (2) for the geodesic gives:
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(6)

We now want to get rid of the derivatives with respect to τ (the proper time), and replace them with derivatives
with respect to x0 (the coordinate time). Applying the chain rule for derivatives gives:
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Substituting the derivatives from equations (7) into equation (6):
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Multiplying both sides of equation (8) by
(
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)−2

:
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We are entering the crucial steps that will separate space from time so that we can use a uniform time step.
Equation (9) has a complicated factor in curly braces. Actually, equation (9) represents four equations, one for each
of α = 0, 1, 2, 3. The complicated factor, because it depends only on x0 and τ , is the same for all four equations. We
are going to sacrifice one of the equations to solve for the complicated factor. In particular, we are going to sacrifice
the equation for α = 0.

Separating equation (9) into separate equations for α = 0 and α = 1, 2, 3, and then using i instead of α to remind
ourselves that the index now only goes from 1 to 3:
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To solve equation (10a) for the complicated factor, we now choose time to be absolute. In particular, we choose
that both the particle time r0 and the coordinate time x0 are to be measured in absolute time, hence:

dr0

dx0
= 1,

d2r0

dx02
= 0 (11)

We don’t necessarily need to choose space to be absolute for this derivation; however, we will need to choose space to
be absolute when electromagnetism is added.
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Solving for the complicated factor by substituting equations (11) into equation (10a) gives:{
d2x0

dτ2

(
dx0

dτ

)−2
}

= −g0σ[µν, σ]
drµ

dx0
drν

dx0
(12)

Substituting equation (12) into equation (10b) and moving the term containing the complicated factor to the right
hand side gives:

d2ri

dx02
= −

(
giσ − g0σ

dri

dx0

)
[µν, σ]

drµ

dx0
drν

dx0
(13)

Finally, replacing x0 with ct and multiplying both sides of equation (13) by c2 gives equation (1).
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