
Abstract

A problem with General Relativity is that it is computationally ineffi-
cient. This paper shows how to solve that problem by implementing General
Relativity in absolute space and absolute time, resulting in Absolute Gravity.
Absolute Gravity makes all of the same predictions as General Relativity.
The most important result in this letter is the force equation for Absolute
Gravity; it corresponds to the geodesic equation in General Relativity. The
field equations are the same in both General Relativity and Absolute Grav-
ity, except for their interpretation. Among other things, Absolute Gravity
restores simultaneity and eliminates curved spacetime. Absolute Gravity
unifies Einstein’s General Relativity with Newton’s Absolute Space and Ab-
solute Time.
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1 Introduction

This is an update on work presented in [3], which demonstrated how to re-
produce the results of the Michelson-Morley experiment in absolute space
and absolute time. After reproducing individual results from Special and
General Relativity, it became clear that Absolute Gravity could reproduce
all of them. To demonstrate the equivalence, this letter shows how to derive
Absolute Gravity from General Relativity. Absolute Gravity unifies Ein-
stein’s General Relativity[1] with Newton’s Absolute Space and Absolute
Time[2].

Here is the most important result in this letter, the force equation for
Absolute Gravity:

d2ri

dt2
=

(
1

c

dri

dt
g0σ − giσ

)
[µν, σ]

drµ

dt

drν

dt
(1)

Equation (1) is written using Einstein’s summation convention. The indexes
µ, ν, and σ run from 0 to 3. The index i runs from 1 to 3. Equation (1)
represents a system of three equations for i = 1, 2, 3. t is absolute time. The
ri are the absolute coordinates (rx, ry, rz) of a particle in an absolute (x, y, z)

coordinate system, so that d2ri

dt2
is the absolute acceleration of a particle that

is moving at absolute velocity dri

dt . The [µν, σ] are Christoffel symbols of the
first kind. Inside the Christoffel symbols, it is important to remember that
x0 = ct and x1, x2, x3 = x, y, z. In the summations on the right hand side,
it is important to remember that r0 = ct, so that dr0

dt = c. The units for
t and x, y, z are ordinary time and length units; for example, seconds and
meters. No constants have been set to 1. Mass does not appear in equation
(1) because gravitational acceleration is independent of mass.

In Absolute Gravity, the field equation for the generation and propaga-
tion of gµν is the same as the Einstein equation in General Relativity. There
is an important difference of interpretation, though. In Absolute Gravity,
gµν is no longer a metric; it is a set of 10 potentials (taking advantage
of the symmetry of gµν). These 10 potentials can be written as a scalar
gravitational potential g, a 3-vector momentum potential w, and a symmet-
ric 3-by-3 matrix force potential S. These correspond to the gravitational,
momentum, and force potentials used to explain the Michelson-Morley ex-
periment in absolute space and absolute time [3].
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2 Absolute clocks and rulers

To motivate Absolute Gravity, I think it is useful to consider the difference
between the standard clocks and rulers of Special and General Relativity,
and the absolute clocks and rulers of Absolute Gravity. Absolute clocks and
rulers are standard clocks and rulers that have been corrected for the effects
of motion and gravity.

General Relativity uses standard clocks and rulers to measure proper
times and distances. One has to be careful about the definition of “stan-
dard”, though. For example, a pendulum is a kind of clock that cannot
be a standard clock because a pendulum stops working in the absence of
mechanical or gravitational acceleration. A pendulum is an acceleration
clock.

By standard clock or ruler, what is usually meant is an electromagnetic
clock or ruler. That is, a clock or ruler whose timekeeping or size are based
on classical or quantum electromagnetic effects such as electron transitions,
or the flexing of a wind-up spring, or atomic repulsion.

But standard clocks and rulers are more than just electromagnetic clocks
and rulers. They both must be corrected for undesirable effects, such as
temperature.

Consider two thermally uncorrected electromagnetic clocks and two ther-
mally uncorrected electromagnetic rulers. Place one of each in a hot oven,
and one of each in a cold refrigerator. After a while they will probably mea-
sure different times and lengths. If you didn’t know about thermal effects,
you might conclude that household appliances curve space and time.

Similarly, standard clocks and rulers in different circumstances are found
to measure different times and lengths. If you take two standard clocks and
keep one in your lab while sending the other around the Earth, they will
measure different times when brought back together. General Relativity
concludes that motion and gravity curve space and time.

Absolute Gravity instead concludes that standard clocks and rulers are
uncorrected for motion and gravity.

An absolute clock and ruler can conceptually be created from a standard
clock and ruler by adding a pendulum and an omnidirectional microwave
antenna. The standard clock and ruler measure proper time and proper
length. The pendulum measures the combined effects of the local mechani-
cal and gravitational accelerations. The omnidirectional microwave antenna
measures the local red/blue shift with respect to the cosmic microwave back-
ground radiation, to obtain the local velocity and mechanical acceleration.
The difference between the acceleration measured by the pendulum (com-
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bined mechanical and gravitational acceleration) and by the microwave an-
tenna (mechanical acceleration only) gives the gravitational acceleration.
This provides sufficient information to correct the standard clock and ruler
for motion and gravity.

Using absolute clocks, two events are simultaneous if they occur at the
same absolute time. Using absolute rulers, the circumference of a circle is
always 2π times the radius.

3 Deriving the Absolute Gravity force equation

Most General Relativity texts give the geodesic equation in a form similar
to:

d2rα

dτ2
= −Γαµν

drµ

dτ

drν

dτ
(2)

τ is the proper time as measured by a standard clock moving with the par-
ticle. The trajectory of the particle in four dimensions is rα = (r0, r1, r2, r3)
where (r0, r1, r2, r3) are the coordinates of the particle in the coordinate sys-
tem xα = (x0, x1, x2, x3). x0 is taken to be time coordinate x0 = ct, where
in General Relativity x0 and/or t are called the coordinate time. Later we
will take r0 = x0 = ct, with t the absolute time, and (x1, x2, x3) to be the
absolute (x, y, z) coordinate system, but there is work to be done before we
can make that leap.

The Christoffel symbol of the second kind in equation (2), Γαµν , conflates

the role of the inverse metric, gαβ with the derivatives of the metric gαβ in
calculating the geodesic:

Γαµν =
1

2
gασ

(
∂gσµ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
(3)

We are going to revert to a somewhat more archaic notation (see [1],
equations (20d) through (23)) using Christoffel symbols of the first kind,
written as [µν, σ], to separate the inverse metric from the derivatives of the
metric:

[µν, σ] =
1

2

(
∂gσµ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
(4)

Substituting equation (4) into equation (3) for Γαµν gives:

Γαµν = gασ[µν, σ] (5)
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Substituting equation (5) into equation (2) for the geodesic gives:

d2rα

dτ2
= −gασ[µν, σ]

drµ

dτ

drν

dτ
(6)

We now want to get rid of the derivatives with respect to τ (the proper
time), and replace them with derivatives with respect to x0 (the coordinate
time). Applying the chain rule for derivatives gives:

drα

dτ
=

drα

dx0
dx0

dτ
,

d2rα

dτ2
=

(
dx0

dτ

)2
d2rα

dx02
+

drα

dx0
d2x0

dτ2
(7)

Substituting the derivatives from equations (7) into equation (6):

d2rα

dx02

(
dx0

dτ

)2

+
drα

dx0
d2x0

dτ2
= −gασ[µν, σ]

drµ

dx0
drν

dx0

(
dx0

dτ

)2

(8)

Multiplying both sides of equation (8) by
(
dx0

dτ

)−2
:

d2rα

dx02
+

drα

dx0

{
d2x0

dτ2

(
dx0

dτ

)−2
}

= −gασ[µν, σ]
drµ

dx0
drν

dx0
(9)

We are entering the crucial steps that will separate space from time.
Equation (9) has a complicated factor in curly braces. Actually, equation
(9) represents four equations, one for each of α = 0, 1, 2, 3. The complicated
factor, because it depends only on x0 and τ , is the same for all four equations.
We are going to sacrifice one of the equations to solve for the complicated
factor. In particular, we are going to sacrifice the equation for α = 0.

Separating equation (9) into separate equations for α = 0 and α = 1, 2, 3,
and then using i instead of α to remind ourselves that the index now only
goes from 1 to 3:

d2r0

dx02
+

dr0

dx0

{
d2x0

dτ2

(
dx0

dτ

)−2
}

= −g0σ[µν, σ]
drµ

dx0
drν

dx0
(10a)

d2ri

dx02
+

dri

dx0

{
d2x0

dτ2

(
dx0

dτ

)−2
}

= −giσ[µν, σ]
drµ

dx0
drν

dx0
(10b)

To solve equation (10a) for the complicated factor, we now assume that
space and time are absolute. In particular, we assume that both the particle
time r0 and the coordinate time x0 are measured in absolute time, hence:

dr0

dx0
= 1,

d2r0

dx02
= 0 (11)
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Solving for the complicated factor by substituting equations (11) into
equation (10a) gives:{

d2x0

dτ2

(
dx0

dτ

)−2
}

= −g0σ[µν, σ]
drµ

dx0
drν

dx0
(12)

Substituting equation (12) into equation (10b) and moving the term
containing the complicated factor to the right hand side gives:

d2ri

dx02
=

(
dri

dx0
g0σ − giσ

)
[µν, σ]

drµ

dx0
drν

dx0
(13)

Finally, replacing x0 with ct and multiplying both sides of equation (13)
by c2 gives equation (1).

4 Updates on work being prepared for release

Absolute Electrogravity. Adding the electromagnetic force to Abso-
lute Gravity is straightforward. Absolute Electrogravity unifies Einstein’s
General Relativity with Maxwell’s Electromagnetism in Newton’s Absolute
Space and Absolute Time.

Examples of Absolute Gravity. Contains Absolute Gravity force
equations for the Schwarzschild and Kerr solutions (including charge). Also
contains a useful approximation to the force equation around a massive
rotating sphere such as the Earth, extending [3].

Absolute Gravity as Classical Mechanics. The force equation (1)
can be written in ordinary 3-dimensional scalar/vector/matrix notation, but
there are enough steps involved that it merits its own letter.

The Great Shell: Dark Energy is Gravity. In Absolute Gravity,
matter falling toward a black hole creates a shell around the event horizon.
The increasingly massive shell causes the event horizon to expand, encom-
passing matter on the inside surface of the shell. This influx of matter to
the inside of the event horizon creates a gravitational potential attracting
everything inside the black hole toward the inside surface of the shell. The
galaxies in our universe are not expanding away from each other; we are all
being drawn to the inside surface of the Great Shell. Is there a way for us to
break through the Great Shell, to be born into the larger universe outside?

Quantum Electrogravity and the Weak and Strong Forces. If
you guessed that the vector w and the matrix S mentioned at the end of
the Introduction stood for weak and strong, you guessed correctly.
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