
Consistent notation for common coordinate systems

David B. Parker∗

pgu.org
(Dated: January 15, 2023)

INTRODUCTION

When I work problems that involve multiple coordinate systems, notation can become a problem itself. This
technical note describes my personal preference for notation. It covers the four coordinate systems I use most often:
cartesian (x, y, z), cylindrical (rc, θc, zc), spherical (rs, θs, φs), and oblate spheroidal (ro, θo, φo). I also include tables
for converting between cartesian and the other coordinate systems, including differentials and unit vectors.

A simple motivating example of an equation that uses multiple coordinate systems at the same time is a field f that
has two constant components a and b, where a is in the direction of the spherical radius, and b is in the direction of
the cylindrical radius:

f = a r̂s + b r̂c. (1)

Equation (1) is simpler and more intuitive than either the purely spherical equation:

f = (a+ b cos(φs)) r̂s − b sin(φs) φ̂s, (2)

or the purely cylindrical equation:

f =

(
arc√
r2c + z2c

+ b

)
r̂c +

azc√
r2c + z2c

ẑc. (3)

For another motivating example, compare equation (27e) for cos(φo) to equation (21b) for sin(φs) and cos(φs), and
you can see that a more concise and potentially more productive equation for cos(φo) is to mix oblate and spherical
coordinates:

cos(φo) =
ro√

r2o + a2 sin(φs)2
cos(φs) (4)

Between the different coordinate systems, the z and θ coordinates are identical: z = zc and θc = θs = θo. Even
though they are identical, I still usually use subscripts to distinguish between them because there are use cases where
the difference is important. For example, when converting between cartesian and cylindrical coordinates without
using subscripts, you can get equations like:

0 = z − z =⇒ 0 = 0, (5)

when what you really want is

0 = z − zc =⇒ z = zc. (6)

I leave the cartesian coordinates unsubscripted because they are the coordinate system in which all the others are
defined. However, if I ever needed to give the cartesian coordinates subscripts, I would probably use a for absolute:
(xa, ya, za). If I am working with two coordinate systems with no conflicting coordinates, such as cartesian and
spherical, then I usually leave all the subscripts off: (x, y, z) and (r, θ, φ).

To minimize my brain space devoted to coordinate systems, I tried to make them as consistent as possible.

• Consistent radial coordinates. All radial coordinates are labeled as r with a mnemonic subscript. The radial
coordinates always appear as the first coordinate. All radial components have a standard range of 0 ≤ r <∞.
However, it often happens that it is acceptable to allow r < 0.

• Consistent positive x axises. The positive x axises in the coordinate systems are (x, 0, 0), (rc, 0, 0), (rs, 0, 0),
and (ro, 0, 0).
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• Consistent x-y planes. The equatorial planes in the coordinate systems are: (x, y, 0), (rc, θc, 0), (rs, θs, 0), and
(ro, θo, 0).

• Consistent azimuthal coordinates. In the three coordinate systems with an azimuthal angle θ, it appears as the
second coordinate, it is labeled as θ with a mnemonic subscript, and it is equal in all three coordinate systems:
θc = θs = θo.

• Consistent signs of elevations. Points above the equatorial plane always have a positive third coordinate, points
below the equatorial plane always have a negative third component.

• Consistent elevation angles. In the two coordinate systems with an elevation angle φ, it appears as the third
coordinate and it is labeled as φ with a mnemonic subscript, even though it has different values in the two
coordinate systems.

• Consistent centered angular ranges. The azimuthal angles θ all have a standard range of −π ≤ θ < π. The
elevation angles φ all have a standard range of −π2 ≤ φ ≤

π
2 . However, it is often acceptable to allow the angles

to assume values outside these ranges.

Two slightly different forms of the arc tangent functions are used in the tables below. The first is the standard arc
tangent function atan(u), where usually u = y

x . The domain of the function is −∞ ≤ u ≤ ∞ and the range of the
function is −π2 ≤ atan(u) ≤ π

2 . The differential is:

d atan(u) =
du

1 + u2
. (7)

The second arc tangent function is atanxy(x, y), which corrects the value of atan( yx ) for the quadrant of x and y.
The range is −π ≤ atanxy(x, y) < π.

for x ≥ 0: atanxy(x, y) = atan(
y

x
), (8)

for x ≤ 0, y > 0: atanxy(x, y) = atan(
y

x
) + π, (9)

for x ≤ 0, y ≤ 0: atanxy(x, y) = atan(
y

x
)− π. (10)

The differential is:

d atanxy(x, y) =
−y dx+ xdy

x2 + y2
. (11)

CYLINDRICAL COORDINATES (rc, θc, zc)

(x, y, z) in terms of (rc, θc, zc):

x = rc cos(θc), (12a)

y = rc sin(θc), (12b)

z = zc, (12c)

dx = cos(θc) drc − rc sin(θc) dθc, (13a)

dy = sin(θc) drc + rc cos(θc) dθc, (13b)

dz = dzc, (13c)

x̂ = cos(θc) r̂c − sin(θc) θ̂c, (14a)

ŷ = sin(θc) r̂c + cos(θc) θ̂c, (14b)

ẑ = ẑc. (14c)
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(rc, θc, zc) in terms of (x, y, z):

rc =
√
x2 + y2, (15a)

θc = atanxy(x, y), sin(θc) =
y√

x2 + y2
, cos(θc) =

x√
x2 + y2

, (15b)

zc = z, (15c)

drc =
xdx+ y dy√

x2 + y2
, (16a)

dθc =
−y dx+ x dy

x2 + y2
, (16b)

dzc = dz, (16c)

r̂c = cos(θc) x̂ + sin(θc) ŷ =
x x̂ + y ŷ√
x2 + y2

, (17a)

θ̂c = − sin(θc) x̂ + cos(θc) ŷ =
−y x̂ + x ŷ√
x2 + y2

, (17b)

ẑc = ẑ. (17c)

SPHERICAL COORDINATES (rs, θs, φs)

(x, y, z) in terms of (rs, θs, φs):

x = rs cos(θs) cos(φs), (18a)

y = rs sin(θs) cos(φs), (18b)

z = rs sin(φs), (18c)

dx = cos(θs) cos(φs) drs − rs sin(θs) cos(φs) dθs − rs cos(θs) sin(φs) dφs, (19a)

dy = sin(θs) cos(φs) drs + rs cos(θs) cos(φs) dθs − rs sin(θs) sin(φs) dφs, (19b)

dz = sin(φs) drs + rs cos(φs) dφs, (19c)

x̂ = cos(θs) cos(φs) r̂s − sin(θs) θ̂s − cos(θs) sin(φs) φ̂s, (20a)

ŷ = sin(θs) cos(φs) r̂s + cos(θs) θ̂s − sin(θs) sin(φs) φ̂s, (20b)

ẑ = sin(φs) r̂s + cos(φs) φ̂s. (20c)
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(rs, θs, φs) in terms of (x, y, z):

rs =
√
x2 + y2 + z2, (21a)

θs = atanxy(x, y), sin(θs) =
y√

x2 + y2
, cos(θs) =

x√
x2 + y2

, (21b)

φs = atan

(
z√

x2 + y2

)
, sin(φs) =

z√
x2 + y2 + z2

, cos(φs) =

√
x2 + y2√

x2 + y2 + z2
, (21c)

drs =
xdx+ y dy + z dz√

x2 + y2 + z2
, (22a)

dθs =
−y dx+ x dy

x2 + y2
, (22b)

dφs =
−zxdx− zy dy + (x2 + y2) dz√

x2 + y2(x2 + y2 + z2)
, (22c)

r̂s = cos(θs) cos(φs) x̂ + sin(θs) cos(φs) ŷ + sin(φs) ẑ =
x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

, (23a)

θ̂s = − sin(θs) x̂ + cos(θs) ŷ =
−y x̂ + x ŷ√
x2 + y2

, (23b)

φ̂s = − cos(θs) sin(φs) x̂− sin(θs) sin(φs) ŷ + cos(φs) ẑ =
−xz x̂− yz ŷ + (x2 + y2) ẑ√

x2 + y2
√
x2 + y2 + z2

. (23c)

OBLATE SPHEROIDAL COORDINATES (ro, θo, φo)

(x, y, z) in terms of (ro, θo, φo):

x =
√
r2o + a2 cos(θo) cos(φo), (24a)

y =
√
r2o + a2 sin(θo) cos(φo), (24b)

z = ro sin(φo), (24c)

dx =
ro√
r2o + a2

cos(θo) cos(φo) dro −
√
r2o + a2 sin(θo) cos(φo) dθo −

√
r2o + a2 cos(θo) sin(φo) dφo, (25a)

dy =
ro√
r2o + a2

sin(θo) cos(φo) dro +
√
r2o + a2 cos(θo) cos(φo) dθo −

√
r2o + a2 sin(θo) sin(φo) dφo, (25b)

dz = sin(φo) dro + ro cos(φo) dφo, (25c)

x̂ =
ro cos(θo) cos(φo)√
r2o + a2 sin(φo)2

r̂o − sin(θo) θ̂o −
√
r2o + a2 cos(θo) sin(φo)√

r2o + a2 sin(φo)2
φ̂o, (26a)

ŷ =
ro sin(θo) cos(φo)√
r2o + a2 sin(φo)2

r̂o + cos(θo) θ̂o −
√
r2o + a2 sin(θo) sin(φo)√

r2o + a2 sin(φo)2
φ̂o, (26b)

ẑ =

√
r2o + a2 sin(φo) r̂o + ro cos(φo) φ̂o√

r2o + a2 sin(φo)2
. (26c)
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(ro, θo, φo) in terms of (x, y, z):

implicit: r4o = (x2 + y2 + z2 − a2)r2o + a2z2, (27a)

explicit: ro =

√
1

2
(x2 + y2 + z2 − a2) +

√
1

4
(x2 + y2 + z2 − a2)2 + a2z2, (27b)

θo = atanxy(x, y), sin(θo) =
y√

x2 + y2
, cos(θo) =

x√
x2 + y2

, (27c)

φo = atan

(√
r2o + a2

ro

z√
x2 + y2

)
, sin(φo) =

√
r2o + a2√

r2o + a2 z2

x2+y2+z2

z√
x2 + y2 + z2

, (27d)

cos(φo) =
ro√

r2o + a2 z2

x2+y2+z2

√
x2 + y2√

x2 + y2 + z2
, (27e)

dro =
ro
√
r2o + a2 cos(θo) cos(φo) dx+ ro

√
r2o + a2 sin(θo) cos(φo) dy + (r2o + a2) sin(φo) dz

r2o + a2 sin(φo)2
, (28a)

dθo =
− sin(θo) dx+ cos(θo) dy√

r2o + a2 cos(φo)
, (28b)

dφo =
−
√
r2o + a2 cos(θo) sin(φo) dx−

√
r2o + a2 sin(θo) sin(φo) dy + ro cos(φo) dz

r2o + a2 sin(φo)2
, (28c)

r̂o =
ro cos(θo) cos(φo) x̂ + ro sin(θo) cos(φo) ŷ +

√
r2o + a2 sin(φo) ẑ√

r2o + a2 sin(φo)2
, (29a)

θ̂o = − sin(θo) x̂ + cos(θo) ŷ, (29b)

φ̂o =
−
√
r2o + a2 cos(θo) sin(φo) x̂−

√
r2o + a2 sin(θo) sin(φo) ŷ + ro cos(φo) ẑ√

r2o + a2 sin(φo)2
. (29c)

Notes on oblate spheroidal coordinates:
1. The parameter a defines how oblate the spheriod is. For a = 0, oblate spheroidal coordinates become spherical

coordinates.
2. The oblate spheroidal coordinates are messy (especially ro), so I do not expand them out when writing (ro, θo, φo)

in terms of (x, y, z). When I experimented with expanding them out, I was not enlightened by the results.
3. To derive the implicit formula for ro, equation (27a), start by squaring and adding equations (24a) through

(24c):

x2 + y2 + z2 = (r2o + a2) cos(θo)
2 cos(φo)

2 + (r2o + a2) sin(θo)
2 cos(φo)

2 + r2o sin(φo)
2 (30a)

= r2o + a2 cos(φo)
2 (30b)

= r2o + a2(1− sin(φo)
2) (30c)

= r2o + a2(1− z2

r2o
) (squaring equation (24c) and solving for sin(φo)

2) (30d)

If we now multiply both sides by r2o and rearrange terms, we get equation (27a).
4. To derive the explicit formula for ro, equation (27b), solve equation (27a) as a quadratic equation in r2o, take

the positive root, and then solve that as a quadratic equation in ro.
5. For converting oblate spheroidal coordinates to and from cartesian, I found the method described in [1] to be

the easiest, especially when implemented using a computer algebra system.
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